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Abstract

The theory of stochastic condensation, which mod-
els the impact of an ensemble of unresolved super-
saturation fluctuations S′ on the volume-averaged
droplet-size distribution f(r), is revisited in the mod-
ern context of subgrid cloud parameterization. The
exact transition probability density for droplet radius
driven by independent, Gaussian S ′ fluctuations that
are periodically renewed is derived and shown to
be continuous but not smooth. The Fokker-Planck
model follows naturally as the smooth-in-time ap-
proximation to this discrete-in-time process. Evolu-
tion equations for the moments of f(r) that include
a contribution from subgrid S′ fluctuations are pre-
sented; these new terms are easily implemented in
moment-based cloud schemes that resolve super-
saturation. New, self-consistent expressions for the
evolution of f(r) and mean-supersaturation S in a
closed, adiabatic volume are derived without approx-
imation; quite appropriately, these coupled equa-
tions exactly conserve total water mass. The be-
havior of this adiabatic system, which serves as a
surrogate for a closed model grid column, is ana-
lyzed in detail. In particular, a new non-dimensional
number is derived that determines the relative im-
pact of S′ fluctuations on droplet spectral evolution,
and the contribution of fluctuations to S is shown to
be negative definite, maximal near the accommoda-
tion length and has a direct correspondence to the
analysis of Cooper (1989). Observational support
for the theory of stochastic condensation is found
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in cloud droplet spectra from cumulus cloud fields
measured during the RICO and SCMS campaigns.
Increasing spectral broadening with increasing spa-
tial scale is discovered and compares well with the-
oretical predictions. However, the observed spectra
show evidence of non-Gaussian S ′ fluctuations and
inhomogeneous mixing, processes neglected in the
current theory.

1. Introduction

One of the most important theoretical constructs in
atmospheric science is the gradient transport model
for the flux u′ζ ′,

u′ζ ′ = −K∇ζ (1)

which enables the derivation of logarithmic profiles
of mean horizontal velocity (ζ ′ = u′) and temperature
(ζ ′ = T ′) in the atmospheric surface layer and pro-
vides a subgrid closure (eddy viscosity and diffusiv-
ity) for atmospheric models. In modern atmospheric
texts and treatments, the gradient model is usually
postulated a priori. But underlying this model is a
rich stochastic framework that, in the earlier years of
atmospheric science, was given due consideration.
The interested reader is referred to Sutton (1953) for
the historical flavor of this discussion.

In fact, the origin of the gradient transport model
is found in Fokker-Planck theory developed to de-
scribe the evolution of the distribution function of a
system of microscopic entities that obey a stochastic
Lagrangian evolution equation called the Langevin
equation (Risken 1989). The Langevin equation un-
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derlying Eq. (1) is simply

dX

dt
= u

′

where X is the Lagrangian position of a fluid (ζ ′ =
u′) or scalar (ζ ′ = T ′) element and u

′ is an indepen-
dently specified random variable with de-correlation
time, τ . Seen in this light, the gradient model approx-
imation is analogous to the Fokker-Planck approxi-
mation that truncates the Kramers-Moyal expansion
to 1st order in τ (Risken 1989).

The truncation that gives the Fokker-Planck equa-
tion is valid for system evolution times t � τ , regard-
less of the distribution of u

′. For molecular diffusion
of gases in air, τ is on the order of picoseconds and
thus t � τ is clearly satisfied for all atmospheric ap-
plications. However, in the case of unresolved turbu-
lent transport, τ is given by the grid-cell large-eddy
turn-over time and the condition t � τ is not nec-
essarily satisfied. In this case, the validity of the
Fokker-Planck or gradient model depends on the dis-
tribution of u

′, with good model accuracy obtained if
u
′ is normally distributed as is often observed in the

atmosphere.
It is natural, then, to inquire whether this stochas-

tic formulation may have applicability in other sub-
grid problems. In the 1960s a group of Russian sci-
entists (Belyaev 1961; Sedunov 1965; Mazin 1965;
Levin and Sedunov 1966a,b) investigated the evolu-
tion of the droplet-size distribution, f(r), by postulat-
ing a stochastic component to droplet growth

dr

dt
∼ S′

r + a

where r is droplet radius, a is an accommodation
length often set to zero, and S′ is a random super-
saturation fluctuation with the correlation S ′f ′ analo-
gous to the flux u′ζ ′. Appropriately, this theoretical
approach has inherited the name “stochastic con-
densation”, and it has largely garnered interest as
a potential mechanism for spectral broadening to
large droplet sizes. Despite the obvious analogy to
the ubiquitous eddy-diffusivity parameterization, the
investigation of the correlation S ′f ′ and its corre-
sponding gradient model, has largely been ignored
outside of the Russian community with few excep-
tions (e.g. Manton (1979); Khvorostyanov and Curry
(1999a,b)). Very recently, Mcgraw and Liu (2006)
analyzed the steady-state behavior of f(r) within the
context of Fokker-Planck theory.

In this work we take another look at the theory of
stochastic condensation with the overarching goals
of (i) clarifying earlier derivations and presenting new
exact results, (ii) motivating the use of stochastic

condensation as a subgrid cloud model by assessing
the impact of S′-fluctuations on a closed, adiabatic
volume, and (iii) using in-situ observations of droplet
spectra averaged over a fixed segment length to pro-
vide parameter estimates for subgrid cloud model-
ing. These goals are achieved in the following spe-
cific ways. In Sec. 2 we introduce a stochastic model
that assumes S′ is independently and normally dis-
tributed with given time-dependent variance, σ2(t)
and fixed renewal time. The assumption that S ′ is
explicitly Gaussian differs from the approach of the
early Russian investigators but is advantageous for
two important reasons:

• As a point of consistency, the assumption t � τ
is not necessary and the application of stochas-
tic condensation to subgrid modeling is appro-
priate.

• The present Gaussian model is exactly solv-
able. The availability of an exact solution for f(r)
has application outside of this work (Andrejczuk
et al. 2006).

It should be further emphasized that we do not con-
struct a model for σ2(t), nor do we relate S′ to verti-
cal velocity; rather, we treat σ2(t) as externally pro-
vided. A discussion of the validity of these modeling
assumptions is postponed until their consequences
have been deduced.

Having derived the exact analytic solution to the
present model in Sec. 3, and the corresponding
Fokker-Planck equation in Sec. 4, the rest of the
article pertains to the evolution of f(r) in a closed,
adiabatic volume. As discussed by Merkulovich
and Stepanov (1981) among others, the equations
for temperature and total parcel liquid water con-
tent (or equivalently mean parcel supersaturation, S)
are coupled to f(r) and must be considered. We
derive this analytic coupling without approximation
in Sec. 5, and the coupled evolution of {S, f} in
a closed, adiabatic volume is assessed—both with
(Sec. 5) and without (Sec. 6) recourse to the quasi-
stationary assumption. The objective of this analy-
sis is to quantify the impact of unresolved Gaussian
supersaturation fluctuations on a closed, adiabatic
volume as a function of relevant non-dimensional
numbers, and thereby, motivate the use of stochastic
condensation as a subgrid cloud model. Finally, we
assess the length dependence of segment averaged
cloud droplet spectra from cumulus fields in Sec. 7
and use the comparison of modeled and observed
spectra to provide estimates of the relevant parame-
ters for subgrid modeling purposes. Sec. 8 contains
a summary.
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2. The Model

Following the proceeding discussion, we introduce
the following exactly solvable model of stochastic
condensation and evaporation. The supersaturation
field along the i-th droplet’s trajectory is decomposed
into mean, S(t), and fluctuating, S′(i, t), components
where S′ is a centered, independent random vari-
able that obeys a Gaussian law and is renewed after
a time, τ(t). This renewal process imparts a discrete
nature on the droplet statistics. Let us decompose
continuous time, t, into segments of length τ :

t =

n−1∑

i=1

τi + ϕτn (2)

where the restriction ϕ ∈ [0, 1) uniquely defines the
integer n for a given t. The label n thereby de-
notes the time interval

∑n−1
i=1 τi ≤ t <

∑n
i=1 τi and

the corresponding supersaturation S′
n drawn at time

t =
∑n−1

i=1 τi from a Gaussian of variance σ2
n. With

this notation, the two-time statistics of S ′ are given
by

〈S′
m(i, t1)S

′
n(j, t2)〉 = σ2

nδmnδij (3)

where 〈·〉 represents an ensemble average over S ′.
To complete the model we specify the following
Langevin equation:

ṙ =
α(S + S′)

r + a
(4)

where a ≈ 2 µm is an accommodation length and α
is defined in Appendix A.

A key underlying assumption of the present model
is that τ is independent of the radius ri of the i-th
droplet. This assumption is inherent to much of the
work on stochastic condensation although it is rarely
discussed†. Statistical independence of τ and ri is
justified at large spatial scales (many cubic meters in
extent) where each coherent S′-region contains a full
ensemble of droplet sizes. Thus each ensemble of
droplets of a given size—scattered densely through-
out the volume—evolve according to the given sys-
tem evolution time τ . Recently, Jeffery and Reis-
ner (2006) investigated the de-correlation time of S
during the mixing of clear and cloudy air and found
that τ = max(τreact, τeddy) where τeddy is the sys-
tem (grid-cell) large-eddy turn-over time and τreact is
the phase relaxation time (Squires 1952). It must
be emphasized that within the context of the present
model, τ can be any time-dependent arbitrary func-
tion of the moments of r.

†Khvorostyanov and Curry (1999a) offers an effort to relax this
assumption.

A few words on the specification of S are in or-
der. Since the early studies of Levin and Sedunov
(1966a,b, 1967), S(t) has typically been given as
a constant, externally specified parameter. In the
present context of subgrid cloud parameterization,
this approach is insufficient because it does not en-
sure conservation of water mass and entropy within
the grid cell or column (Merkulovich and Stepanov
1981). Consistent with an Eulerian model, we de-
fine S as the spatially averaged supersaturation in a
volume of air that evolves according to (Pruppacher
and Klett 1997, pp. 513)

dS

dt
= A1w − A2

ρl

dt

where {A, B} are constants, w is vertical velocity,
ρl is liquid water density and an overbar represents
a spatial average. Following standard methods, we
then evoke the ergodic hypothesis which equates
this spatial average with an ensemble average over
all droplet radii and supersaturations:

dS

dt
=

d

dt
〈〈S〉r〉 = A1w − A2

d

dt
〈〈ρl〉r〉

where 〈·〉r represents an ensemble average over r.
The ergodic hypothesis demands that the droplets in
every range [r, r+dr] experience a complete ensem-
ble of S′. The validity of this assumption improves
with increasing volume size; at a minimum, we re-
quire a volume of several cubic meters in extent. It
must be emphasized that knowledge of the individ-
ual distributions of r and S′ is insufficient to evaluate
the double average 〈〈·〉r〉 since r and S′ are not inde-
pendent. Rather, the joint r-S′ distribution function is
needed.

Within the context of subgrid cloud modeling at
coarse resolution, the present model provides no in-
formation on the number, location or spatial structure
of the modeled clouds. Thus the physical interpreta-
tion of the present model is relatively unconstrained.
Consider, for example, the case where a significant
fraction of the support of f(r) resides on r ≤ 0, i.e. a
significant fraction of droplets have evaporated com-
pletely. We may infer this to be the outcome of a
single entrainment event in an updraft, or the death
of several cumuli in a cloud field containing many
clouds. In the same manner, not all clouds modeled
by the present approach need be of the same age—
a collection of droplets that grow stochastically from
zero size at a given time may represent the growth
of a new cloud†. This is both the strength and weak-

†For this scenario, more accurate results are obtained by in-
cluding droplet activation.
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ness of subgrid ensemble modeling—no spatial in-
formation is needed, but unfortunately, the subgrid
spatial structure is indeterminate.

3. Exact Analytic Solution

We proceed to calculate the exact transition prob-
ability distribution function for a single droplet,
G(r, t|r0). This derivation exploits the seminal prop-
erty that the sum of two independent Gaussian ran-
dom variables is, itself, a Gaussian random variable.
Integrating Eq. (4) gives

(r + a)2 = (r0 + a)2 + 2α

∫ t

0

dξ S(ξ) + 2αλ(t) (5)

where

λ ≡
∫ t

0

dξ S′(ξ)

and r(t = 0) = r0. It is important to emphasize that
Eq. (5) does not incorporate a boundary condition at
r = 0 that prevents the prediction of negative radii.
Thus this equation is only valid for those S ′ fluctua-
tions that give r ≥ 0. In terms of G, this restriction
demands G = 0 for r < 0.

The discrete nature of S′ appears in the evaluation
of λ for the present model:

λ(t) =

n−1∑

i=1

τiS
′
i + ϕτnS′

n. (6)

Since the sum of independent Gaussian random
variables is Gaussian, it follows immediately that λ
is normally distributed with variance

∑n−1
i=1 τ2

i σ2
i +

ϕ2τ2
nσ2

n. A more rigorous derivation of this result
formally convolves over all {S ′

1, S
′
2, . . . , S

′
n} combina-

tions that produce a given λ. For example, denoting
the first term on the rhs of Eq. (6) λ0, the probability
of λ is

P (λ) = 〈P (λ0)P (S′)〉λ0+ϕτnS′=λ

where the condition λ0 + ϕτnS′ = λ selects the rele-
vant subset of all {λ0, S

′} combinations. Computing
this expected value we find

P (λ) =

∫ ∞

−∞

dS′ 1√
2π
∑n−1

i=1 τ2
i σ2

i

exp

[
− (λ − ϕτnS′)2

2
∑n−1

i=1 τ2
i σ2

i

]

1√
2πσn

exp

(
− S′2

2σ2
n

)
(7)

=

exp

[
− λ2

2(
∑

n−1

i=1
τ2

i
σ2

i
+ϕ2τ2

n
σ2

n
)

]

√
2π(
∑n−1

i=1 τ2
i σ2

i + ϕ2τ2
nσ2

n)

which is a Gaussian with variance
∑n−1

i=1 τ2
i σ2

i +
ϕ2τ2

nσ2
n, as expected.

Using Eq. (5) and the relation, P (r) =
(∂λ/∂r)P (λ), gives

G(r, t|r0) =
r + a√
πDint

exp

(
− ∆2

4Dint

)
(8)

with time-integrated diffusivity

Dint(t) ≡ 2α2

(
n−1∑

i=1

τ2
i σ2

i + ϕ2τ2
nσ2

n

)
(9)

and where

∆ ≡ (r + a)2 − (r0 + a)2 − 2α

∫ t

0

dξS(ξ)

is the difference between (r + a)2 and the value ob-
tained from evolving (r0 +a)2 in time using the mean
supersaturation S. Taking the limit of vanishing S ′-
fluctuations, σ2 → 0, we find that G converges to a
delta-function giving ∆ → 0, as expected.

Equation (8) is the exact analytic solution to the
model of Sec. 2. We reiterate that this solution is
strictly valid when G(r < 0) = 0. However, as long
as the solution for r > 0 retains its full skewed-
Gaussian form, i.e. limr→0 G � a(πDint)

−1/2, ne-
glect of the r = 0 boundary condition in the deriva-
tion of the analytic solution is justified. In practice,
this limits the applicability of the present model to
those {r0, S(t),Dint(t)} which keep the support of G
away from r = 0. The discrete nature of the renewal
process is evident in the definition of Dint. While
the variance of S′ may vary continuously in time,
the renewal process samples S ′ at discrete times
t ∈ {0, τ, 2τ, . . . , (n − 1)τ}.

3a. Time-independent σ2

The connection between Eq. (8) and a diffusive pro-
cess with diffusivity D is revealed when the statistics
of S′ are time-independent. In this case, Eq. (8) be-
comes

G(r, t|r0) =
r + a√
πDγ

exp

(
− ∆2

4Dγ

)
(10)

where D ≡ 2τα2σ2 and the time

γ(t) = {(n − 1) + ϕ2}τ (11)

where {ϕ, n} are defined implicitly by Eq. (2). Equa-
tion (10) has the familiar form of a Green’s function
solution describing the r-space diffusion of (r + a)2.
As expected, D exhibits a linear dependence on the
renewal time, τ , and the S′ variance, σ2.
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Inspection of Eqs. (2) and (11) reveals that γ dif-
fers from t; this comparison is shown in Fig. 1. The
two times agree periodically at every ϕ = 0, while
at ϕ = 1/2, t exceeds γ by τ/4. While γ is continu-
ous in time it is not smooth, and all the statistics of
spectral evolution inherit this lack of smoothness.

0 1 2 3 4 5

0
1

2
3

4
5

t (τ)

γ 
(τ

)

Figure 1: The function γ(t), defined by Eq. (11), is
continuous but not smooth, and is periodically equal
to t when S′ is renewed (ϕ = 0).

3b. Droplet population

For a population of droplets where the S′ renewal
times are synchronized, i.e. all droplet S ′-renewals
occur at the same time, the droplet-size probability
density function, f(r, t), is given by the convolution
of G with the initial distribution of sizes, f0(r):

f(r, t) =

∫ ∞

0

dr0 f0(r0)G(r, t|r0)

The present model is of sufficient generality to
incorporate distributions of renewal times that are
not synchronized. A pertinent example is the case
where the renewal time, τ , is the same for each drop
but the first renewal event differs and occurs at a time
ϕ0τ with ϕ0 ∈ [0, 1]. Evaluation of f now includes a
convolution over the initial distribution, ϕ(ϕ0), of ϕ0

values:

f(r, t) =

∫ ∞

−∞

dr0

∫ 1

0

dϕ0 f0(r0)ϕ(ϕ0)G(r, t|r0, ϕ0)

3c. 〈S′|r〉 and the PDF equation

The exact analytic solution G(r, t|r0) has a corre-
sponding equation that is formed by spatially aver-
aging the general PDF equation for f̃(r, t, x) over a
droplet field where r̃(t, x) is the radius of the droplet
at (t, x) and f̃ ≡ δ(r− r̃(t, x)) is the single-point den-
sity function. In the present context, this spatial av-
erage is replaced by an ensemble average over S ′,
such that f(r, t) = 〈f(r, t, S ′)〉 where f(r, S′) is the
joint {r, S′} distribution function. The general PDF
equation in this case is

∂f(r, t)

∂t
= − ∂

∂r

(〈
dr

dt
f(r, t, S′)

〉)

which, for the present model, is conveniently writ-
ten in terms of the conditional quantity 〈S ′|r〉 (Jeffery
and Reisner 2006):

∂f(r, t)

∂t
= −αS

∂

∂r

(
f(r, t)

r + a

)
− α

∂

∂r

( 〈S′|r〉
r + a

f(r, t)

)

(12)
The quantity 〈S′|r〉 is the expected value of S′ for
each r and it facilitates the formulation of a PDF
equation for the single unknown f(r, t). We calcu-
late 〈S′|r〉 below for the present model with constant
{σ2, τ}, synchronized S′ fluctuations and for the tran-
sition probability f(r, t) = G(r, t|r0). These restric-
tions on the statistics of S′ are not fundamental and
are only imposed to simplify notation.

By definition, 〈S′|r〉 depends on f(r, t, S′) and is
therefore an implicit function of f0:

〈S′, t|r〉 ≡
∫ ∞

−∞

dS′ S′f(S′, t|r)

where Bayes theorem states that f(S′|r) ≡
f(r, S′)/f(r). These relations imply that we can-
not calculate 〈S′|r〉 once for f(r) = G(r|r0) and then
convolve over various f0 afterwards.

Construction of the joint-distribution function
f(r, S′) for the present model begins with Eq. (7)
for P (λ). We first note that for the special case
f(r) = G(r|r0)

〈S′, t|r〉G =

∫ ∞

−∞

dS′ S′G(S′, t|r, r0) (13)

where the subscript G emphasizes that the statistic
〈·〉 holds only for f = G. Returning to the integrand
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of Eq. (7), substituting for λ, and using the simplifi-
cation of constant {σ2, τ} gives

G(r, S′, t|r0) =
r + a√

πD(t−ϕτ)1/2
exp

{
− (∆−2αS′ϕτ)

2

4D(t − ϕτ)

}

1√
2πσ

exp

(
− S′2

2σ2

)

Dividing G(r, S′) by Eq. (10) for G(r) gives

G(S′, t|r, r0) =

1√
2πσ

{
γ

(t − ϕτ)

}1/2

exp





−γ

(
S′ − ϕ

2αγ ∆
)2

2(t − ϕτ)σ2





(14)

This equation preserves an important property of the
renewal process, namely, that the statistics of S ′ are
independent of r at the moment, ϕ = 0, when S′ is
sampled. For ϕ 6= 0, “unusually” large drops where
∆ � 0 are associated with positive S ′, while ∆ � 0
corresponds to negative S′. For bounded ∆ we also
observe that

lim
t→∞

G(S′, t|r, r0) = P (S′, t)

This limiting behavior expresses the intuitive state-
ment that as droplets sample more and more S′ real-
izations, their radii become increasingly statistically
independent of the current S′.

Using Eqs. (13) and (14) we finally arrive at

〈S′, t|r〉G =
ϕ

2αγ
∆ (15)

which is discontinuous in time and expresses that
〈S′|r〉G = 0 at the moment, ϕ = 0, when S′ is sam-
pled, 〈S′|r〉G ∼ ∆ otherwise, and

lim
t→∞

〈S′, t|r〉G = 0

for bounded ∆. Closing Eq. (12) using (15) we find
that, indeed, G(r) given by Eq. (10) is a solution of
the resulting equation†.

The conditional quantity, 〈S′|r〉G, determines the
net r-space “velocity”, vG, caused by the S′ fluctua-
tions as seen from Eq. (12).

vG ≡ α 〈S′|r〉G
r + a

=
ϕ

2γ

∆

(r + a)
.

This velocity is positive (negative) for ∆ > 0 (∆ < 0)
and causes G to broaden about ∆ = 0.

†Note that the relation ∂/∂t = 2ϕ∂/∂γ is helpful in this regard.

4. Fokker-Planck Approximation

The only difference between the behavior of the ex-
act transition distribution function, Eq. (8), for the
present model and r-space diffusion of (r + a)2 with
a time-dependent diffusivity is the discrete nature of
Dint which is exemplified in the behavior of γ shown
in Fig. 1. Replacing the discrete, ϕ2-weighted sam-
pling of σ2 by its continuous surrogate gives the
Fokker-Planck approximation to the exact solution.

The Fokker-Planck equation describing the evolu-
tion of the PDF of β = (r + a)2 with drift 2αS and
diffusivity DFP is

∂fFP(β, t)

∂t
= −2αS

∂fFP

∂β
+ DFP

∂2fFP

∂β2

where DFP(t) ≡ 2τα2σ2 is the continuous version of
Eq. (9). Straightforward manipulation yields

∂fFP(r, t)

∂t
= −αS

∂

∂r

(
fFP

r + a

)
+
DFP

4

∂

∂r

1

(r + a)

∂

∂r

fFP

(r + a)
(16)

with Green’s function solution

GFP(r, t|r0) =
r + a√

π
∫ t

0
dξDFP(ξ)

exp

(
− ∆2

4
∫ t

0
dξDFP(ξ)

)

(17)
Equations (16) and (17), unlike the exact solution,
are smooth. We observe that GFP is equal to G at
the renewal times t = iτ . Formally we can derive
GFP from G by taking the limit τ → 0 while holding
Dint constant. This renormalization is an approxima-
tion that holds when τ � t for all t of interest. The
small τ limit does not generally hold for turbulent sys-
tems where τ corresponds to the system (grid cell)
large-eddy turnover time.

Equations (16) and (17) were first derived by
Belyaev (1961) and further explored by Sedunov
(1965) and Levin and Sedunov (1966a,b, 1967) for
a = 0. These authors do not derive an exact solution
and then infer the Fokker-Planck equivalent as we
have done here. Rather they use standard methods
from Fokker-Planck theory that are available in many
texts, e.g. Risken (1989), and are not pursued here.
Of further interest, Manton (1979) uses a first order
smoothing approximation to derive Eq. (16) from cor-
related S′ fluctuations and the τ → 0 renormaliza-
tion.

A comparison of G and GFP for t ∈ {3, 3.5, 4}τ ,
S = 0, constant {σ2, τ}, r0/a = 5 and r4

0/(Dτ) = 30
is shown in Fig. 2. For visual clarity, {G, GFP} is
translated to the right for successive times. Also
shown is the histogram, Gsim, obtained from a



Jeffery et al. [in review, JAS; Do not quote, cite or distribute] 7

stochastic simulation of 107 droplets. Good agree-
ment is seen between G and Gsim demonstrating
that with 107 droplets—still 104–107 less than a typ-
ical model grid-cell—the stochastic simulation has
converged to the ensemble result. The figure also
shows that at t = 3.5τ (ϕ = 0.5), the Fokker-Planck
approximation overestimates the distribution width
as compared to the ensemble and stochastic results.
This overestimation scales with t/γ, and decreases
with increasing t. These graphical results demon-
strate that, while G is the appropriate solution to as-
sess the accuracy of stochastic droplet models (An-
drejczuk et al. 2006), GFP is of sufficient accuracy
for atmospheric modeling applications.

r

G
(r,

 t 
| r

0)

t = 3τ t = 3.5τ t = 4τ

Figure 2: Comparison at t ∈ {3, 3.5, 4}τ of the exact
ensemble result G (thick gray line; Eq. (10)) with the
Fokker-Planck approximation GFP (thin black line;
Eq. (17)) and the histogram Gsim (2), computed from
a stochastic simulation of 107 droplets. Distributions
are shown for 0 ≤ r ≤ 1.65r0 and are translated to
the right at successive times for visual clarity. Pa-
rameter values are S = 0, constant {σ2, τ}, r0/a = 5
and r4

0/(Dτ) = 30.

4a. 〈S′|r〉FP

Comparison of Eqs. (12) and (16) gives the expres-
sion for 〈S′|r〉 in the Fokker-Planck approximation:

〈S′|r〉FP = −DFP

4α

1

fFP

∂

∂r

{
fFP

(r + a)

}
(18)

This expression is of greater generality than Eq. (15)
for 〈S′|r〉G derived in Sec. 3c because it is valid for
any fFP. For the special case fFP = GFP and con-
stant {σ2, τ}, Eq. (18) gives

〈S′|r〉FP,G =
∆

4αt
(19)

which can be compared to the exact result, (15).
This comparison reveals that the Fokker-Planck ap-
proximation in this case is equivalent to transforming
γ → t and replacing ϕ(t) by its average value of 1/2.
Thus 〈S′|r〉FP,G is the natural continuous approxima-
tion to the discontinuous behavior of 〈S ′|r〉G.

4b. Moments

Equations for the evolution of the r-moments can
be used to incorporate unresolved supersaturation
fluctuations into cloud schemes that resolve S but
do not use bin microphysics. Using the definition
〈·〉r ≡

∫∞

0 dr ·, Eq. (16) and assuming all moments
exist, integration by parts gives the following equa-
tions for the evolution of the r-moments:

d 〈r〉r
dt

= αS

〈
1

r+a

〉

r

−DFP

4

{
fFP(0, t)

a2
+
〈
(r+a)−3

〉
r

}

d〈r2〉r
dt

= 2αS

〈
r

r + a

〉

r

+
DFP

2

〈
a

(r + a)3

〉

r
d〈r3〉r

dt
= 3αS

〈
r2

r + a

〉

r

+
3DFP

4

〈
r(r + 2a)

(r + a)3

〉

r
(20)

valid for a > 0. These equations reveal that the im-
pact of S′-fluctuations on the evolution of the first
three moments depends strongly on f in the “small
r” region r ≤ a. In particular, for narrow spectral sup-
port, S > 0 and fixed {S,DFP}, the S-term increas-
ingly dominates the diffusion term as the spectrum
grows to larger sizes.

5. Adiabatic evolution and effects

The goal of this section is to determine how
the incorporation of unresolved supersaturation
fluctuations—as modeled by either Eq. (16) or (20)—
into an S-resolving cloud microphysical scheme will
impact S and the moments of f(r). The early stud-
ies of stochastic condensation and evaporation ne-
glected the impact of S′ on the adiabatic evolution



Jeffery et al. [in review, JAS; Do not quote, cite or distribute] 8

of S, e.g. (Levin and Sedunov 1966a,b, 1967). The
first self-consistent derivation of evolution equations
for both S and f in terms of a single diffusivity, DFP,
was performed by Voloshchuk and Sedunov (1977).
Quite surprisingly, Voloshchuk and Sedunov use the
r-evolution equation, which does not express con-
servation of mass and entropy, to arrive at the cor-
rect (adiabatic) expression for S. But, as we shall
see, a first-order Taylor series approximation lead
Voloshchuk and Sedunov, by chance, to the exact
result.

5a. σ2 = 0

We first consider the evolution of S of a closed adia-
batic volume (grid-cell) with a non-disperse popula-
tion of droplets of size r0 at t = 0; this analysis lays
the foundation for the σ2 6= 0 case considered sub-
sequently. For this study, we ignore the dependence
of droplet activation on supersaturation and assume
that the system contains a given number of droplets
at t = 0. This is a classical problem in cloud physics
that has been studied since the 1950s.

The equation for S for the present scenario is

dS

dt
= c1w(t) − c2

dr3

dt
(21)

where c1 and c2 are defined in Appendix A. Us-
ing the well-known quasi-stationary (QS) assump-
tion, dS/dt = 0 in Eq. (21), corresponding to the low-
frequency behavior of S(t), and integrating Eq. (21)
gives

r3 = r3
0 + a3Nz(t)

where
Nz(t) ≡

c1

c2a3
z(t)

and z(t) =
∫ t

0 dξ w(ξ). The non-dimensional number
Nz determines the linear relationship between liquid
water and height z(t), and the r-moments are given
by rn = (r3

0 + a3Nz)
n/3.

Using Eq. (5) and substituting BQS = β2/a2 with
β = (r0 + a)2 + 2α

∫ t

0
dξ S(ξ) gives

(
B1/2

QS − 1
)3

=
r3
0

a3
+ Nz(t) (22)

such that SQS = a2/(2α)dBQS/dt and where a sub-
script QS refers to a quantity evaluated using the
quasi-stationary assumption.

5b. σ2 6= 0

We now consider the evolution of S of a closed, adi-
abatic volume with S′ fluctuations using the model

of Sec. 2. Invoking the ergodic hypothesis, the evo-
lution equation for S is a function of the joint r-S ′

statistics:

dS

dt
= c1w(t) − c2

〈〈
dr3

dt

〉

r

〉

= c1w(t)−3αc2

{〈
r2

r+a

〉

r

S+

〈〈
r2

r+a

∣∣∣∣S
′

〉

r

S′

〉}
(23a)

= c1w(t)−3αc2

{〈
r2

r+a

〉

r

S+

〈
r2

r+a
〈S′|r〉

〉

r

}
(23b)

It is important to emphasize that there are two dis-
tinct averaging procedures that appear in Eq. (23):
the 〈·〉 average over an ensemble of S′ fluctuations
and the 〈·〉r average over f(r). The only difference
between Eqs. (23a) and (23b) is the order in which
the averaging is performed. We have already dis-
cussed the conditional average 〈S ′|r〉 in some de-
tail and will proceed to evaluate Eq. (23b) using the
Fokker-Planck approximation.

Substitution of the Fokker-Planck expression,
〈S′|r〉FP, into Eq.(23b) and integration by parts gives

dSFP

dt
= c1w(t)−3αc2

{〈
r2

r+a

〉

r

SFP+
DFP

4α

〈
r(r+2a)

(r+a)3

〉

r

}

(24)
valid for a > 0. Eqs. (16) and (24) form two coupled,
self-consistent equations that describe the evolution
of {fFP, SFP} in a closed, adiabatic system. As a
consistency check we note that the new (3rd) term
on the rhs of Eq. (24) could have also been derived
by simply substituting Eq. (20) for d

〈
r3
〉

r
/dt directly

into dSFP/dt = c1w−c2d
〈
r3
〉

r
/dt. Clearly, Eqs. (16)

and (24) conserve total water.
For a = 0, the integration by parts produces a

boundary term so that Eq. (24) is more conveniently
written

dSFP

dt
= c1w(t) − 3αc2

{
〈r〉r SFP − DFP

4α
F∗

}

where F∗ =
∫∞

0 dr r∂/∂r(f/r). The quasi-stationary
(QS) evaluation of SFP is

SFP,QS =
c1w(t)

3αc2 〈r〉r
+

DFP

4α

F∗

〈r〉r
(25)

which is a result first derived by Voloshchuk and Se-
dunov (1977) using equations that do not express
conservation of mass and entropy †. Voloshchuk

†The corresponding F∗ term in Voloshchuk and Sedunov is
difficult to find; it is the 2nd term on the 2nd line of their Eq. (25).
A more explicit representation of this result is the 1st term on the
2nd line of Eq. (2.13) in Smirnov and Nadeykina (1986) where Ã1

must be interpreted as an operator acting on (De/r).
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and Sedunov obtain the exact, adiabatic result by
chance—their first order Taylor series expansion of
(〈r〉r + 〈r〉′r)−1 in the r-evolution equation happens
to give the same correction to 〈r〉r w that appears in
the S equation, properly averaged. The same Taylor
series expansion of (〈r〉r + 〈r〉′r)−1 is also used by
Cooper (1989, Eq. (7)).

Finally, we note that Mcgraw and Liu (2006) re-
cently derive an expression for SFP using the steady-
state solution (Weibull distribution) to the Fokker-
Planck equation. It is straightforward to show that the
Mcgraw and Liu result is a special case of Eq. (25)
that holds when w = 0 and f is time-independent.

5c. SFP,QS

The QS evaluation of SFP from Eq. (24) is

SFP,QS =
c1w(t)

3αc2

〈
r2

r + a

〉−1

r

{
1 − DFP

4

3c2

c1w(t)
〈J〉r

}

(26)
valid for a > 0 where J = r(r + 2a)/(r + a)3. This
result shows that the presence of S′-fluctuations in a
closed cell—as prescribed by the present model—
act to decrease SFP. In the language of Cooper
(1989, pp. 1306), this occurs because high-〈r〉r re-
gions tend to have S′ > 0 and low-〈r〉r regions have
S′ < 0. However, we emphasize that smaller SQS

values do not imply a trend toward evaporation. In
fact, Eq. (23) demonstrates that grid-averaged liquid
water density is proportional to w(t) and indepen-
dent of S′ in the QS limit.

The impact of S′-fluctuations on SFP,QS depends
on fFP via the spectral moment 〈J〉r. A plot of 〈J〉r
vs 〈r〉r is shown in Fig. 3 for three different fFP. The
figure demonstrates that 〈J〉r peaks in the vicinity of
〈r〉r = a where a is typically around 2 µm. This result
reiterates the conclusion of Sec. 4b that the param-
eterization of unresolved S′ variability in a numeri-
cal model will have the greatest impact on smaller
droplet sizes.

5d. Non-dimensional number, ND

In Sec. 5a, the usefulness of the non-dimensional
number Nz for the case σ2 = 0 was highlighted. For
σ2 6= 0, we can construct a 2nd non-dimensional
number that determines the relative impact of S ′-
fluctuations on BQS and hence the r-moments.

In appendix B we derive the non-dimensional
number

ND(t) ≡ c2

c1

∫ t

0 dξ DFP(ξ)

az(t)
(27)

The number ND is thus the ratio of two time-
integrated forcing terms in the SFP evolution

0.01 0.05 0.50 5.00

0.
1

0.
2

0.
3

<r>r a
<

J>
ra

Figure 3: Comparison of 〈J〉r as a function of 〈r〉r
computed from three distributions: the gamma func-
tion fFP ∼ rne−(n+1)r/〈r〉

r with n = 1 (· · ·) and n = 2
(- -), and a non-disperse spectrum fFP = δ(r − 〈r〉r)
corresponding to the limit n → ∞ (—). 〈J〉r peaks in
the vicinity of 〈r〉r = a for all three fFP.

equation—diffusion (c2DFP/a) and velocity (c1w)—
and, as Eq. (30) reveals, ND determines the rela-
tive impact of S′-fluctuations on BQS. Note that when
both {w,DFP} are constant, ND = c2DFP/(c1aw) is
also constant.

ND increases with increasing DFP as expected,
but it also decreases with increasing w, in agreement
with concerns raised by Manton (1979, pp. 902) that
large updraft velocities decrease the relative impor-
tance of S′-fluctuations. Formally, ND ∼ z−1(t); a
similar algebraic dependence is found in the results
of Cooper (1989, Eq. (10)) in his evaluation of a tur-
bulent correction to BQS. However, the additional de-
pendence ND ∼ a−1 is, perhaps, surprising and in-
dicates the importance of regularizing the growth law
dr/dt ∼ r−1 in the limit r → 0.

5e. Impact of ND on SFP

Using the QS approximation, the coupled behavior
of {SFP, fFP} can be solved exactly for fFP = GFP

ignoring boundary effects. For this scenario, an an-
alytic expression for

〈
r3
〉

r
is derived in Appendix C
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such that βQS is defined implicitly by the relation
〈
r3
〉

r
= r3

0 + a3Nz(t) (28)

for a given {Nz, ND}. Note that the behavior of βQS

is of relevance because there is a one-to-one corre-
spondence between the sign of dβQS/dNz and the
sign of SFP.

A contour plot of BQS as a function of {Nz, ND}
calculated from Eq. (28) is shown in Fig. 4(a) for
r0 = 0 and fFP = GFP using the analytic expres-
sion for

〈
r3
〉

r
given in Appendix C. Since Nz ∼ z(t)

it is useful to note that the time-scale c2a
3/(c1w) is

of order 1 second for typical atmospheric tempera-
tures, droplet concentrations and updraft velocities.
Thus the abscissa of Fig. 4 maps closely to time in
seconds for constant w.

For ND = 0, BQS increases monotonically with in-
creasing Nz as shown in the bottom of Fig. 4(a) and
as indicated by Eq. (22). The figure also shows that
BQS decreases with increasing ND at fixed Nz; this
result is consistent with Eq. (30). In addition, the fig-
ure indicates a shaded region where dBQS/dNz < 0
and, consequently, SFP,G < 0. The “triple-point” that
marks the beginning of this negative SFP,G region is
{ND ≈ 6.5, Nz ≈ 0.15,BQS ≈ 1.5}. Thus the possi-
bility of negative SFP,G in a closed, adiabatic updraft
with internal S′ fluctuations which was suggested by
Eq. (26) is verified for fFP = GFP in Fig. 4(a). Also
shown in the figure are three dashed lines that rep-
resent predicted distributions where the fraction of
droplets with r ≥ 0 is in the set {0.7, 0.8, 0.9}. These
lines divide the figure into two qualitative regimes:
the upper-right region where the boundary condition
imposed at r = 0 may impact BQS and the remaining
region where this boundary-condition has little im-
pact. The lines suggest that the prediction of nega-
tive SFP,G is insensitive to this bc for Nz < 0.15.

5f. Impact of ND on reff

We have observed a new effect of the theory of
stochastic condensation which only appears when
the SFP equation is correctly averaged and liquid
water mass is exactly conserved. Namely, in a
closed, adiabatic system,

〈
r2
〉

r
decreases with in-

creasing ND at fixed rvol. The significance of this
observation is that

〈
r2
〉

r
is proportional to the short-

wave scattering coefficient. Thus stochastic conden-
sation provides a mechanism for decreasing grid-
averaged cloud short-wave reflectivity while keeping
cloud amount unchanged. We emphasize, however,
that the droplet coalescence process may act to mit-
igate this effect.

A contour plot of reff/a with effective radius reff ≡

〈
r3
〉

r
/
〈
r2
〉

r
is shown in Fig. 4(b) where the shaded

SFP,G < 0 region and dashed lines are again shown.
In contrast to BQS, reff/a exhibits a monotonic de-
pendence on {Nz, ND} for the shown parameter
regime: reff/a increases with increasing Nz and in-
creases with increasing ND. Note that no change in
the trend of reff/a is observed in the region where
SFP,G < 0.

5g. Summary

Building on the pioneering work of Voloshchuk and
Sedunov (1977), we consider the impact of S ′-
fluctuations, as prescribed by the model of Sec. 2,
on the evolution of a closed, adiabatic grid-cell. This
problem lends itself to non-dimensional analysis and
to the identification of a finite set of time-dependent
non-dimensional numbers that specify the coupled
evolution of {fFP, SFP}. Since it is the time integral
of SFP, and not SFP itself, that controls the evolution
of fFP, we identify the set of numbers that determine
the evolution of {fFP,BQS ∼

∫ t

0
dξ SFP(ξ)} and those

that diagnose SFP, separately. This is shown in Ta-
ble 1 for fFP = GFP and the QS limit. Of particular
importance is the number ND, Eq. (27), which con-
trols the impact of S′-fluctuations on the evolution of
{GFP,BQS}.

GFP(r, t,BQS|r0) SFP,QS

DFP = 0 Nz Nw

DFP 6= 0 Nz, ND Nw, ND,S

Table 1: Enumeration of the time-dependent non-
dimensional numbers that determine {GFP,BQS} in
the QS limit, and those that, subsequently, diagnose
SFP,QS. The numbers Nw, ND and ND,S are derived
in appendix B. Note that ND,S is not relevant when
both {DFP, w} are constant.

The range of ND for typical atmospheric condi-
tions and model grid scales is difficult to ascer-
tain because the magnitude and parametric depen-
dencies of the S′-variance, σ2, are not well under-
stood, and ND, itself, is time-dependent. Passive
scalar theory suggests σ2 ∼ L2/3 in the inertial-
convective subrange where L is the grid-cell length,
but this estimate is questionable since condensa-
tion damps large positive S′ fluctuations. Here we
choose to estimate ND assuming time-independent
{w,DFP} and σ = 0.01, independent of L, while
we retain Kolmogorov scaling for the renewal time,
τ = 0.1ε−1/3L2/3, where ε is the kinetic energy dis-
sipation rate. Two contour plots of ND are shown in



Jeffery et al. [in review, JAS; Do not quote, cite or distribute] 11

1e−03 1e−01 1e+01

0
2

4
6

8
10

12

Nz

N
D

(a)

1e−01 1e+00 1e+01 1e+02 1e+03

0
2

4
6

8
10

12
Nz

N
D

(b)

Figure 4: Contour plots of BQS [4(a)] and reff/a [4(b)] as a function of {Nz, ND} calculated from Eqs. (28)
and (31) with r0 = 0, and indicated by the solid lines. The region where dBQS/dNz < 0 and, con-
sequently, SFP,G < 0 is shaded and bounded with a dashed line. Also shown is the cloudy fraction〈
r0
〉

r
∈ {0.7, 0.8, 0.9} indicated by the dotted contours. Fig. 4(b) demonstrates that reff increases with

increasing ND—a trend that implies lower grid-cell averaged reflectivity with increasing S ′ variability.

Fig. 5 for w = 1 m/s and ε = 0.01 m2 s−3, with 5(a)
assuming an in-cloud droplet concentration of Nc =
50 cm−3 while 5(b) assumes 500 cm−3. The figures
reveal that ND spans four orders of magnitude in the
range 10−2 to 102 for a broad range of conditions,
and increases with temperature and grid-cell length
when σ2 is assumed constant. In particular, an in-
direct aerosol effect is observed with ND increasing
linearly with Nc at fixed σ2. Overall, the estimates
of Fig. 5 indicate that the impact of S′-variability on
volume-averaged quantities is significant over a wide
range of temperatures, droplet concentrations and
spatial scales; this result provides strong theoretical
support for pursuing stochastic condensation as a
subgrid cloud model.

6. Early-time enhanced growth

The analysis of Secs. 5c and 5d exploits the QS ap-
proximation which postulates the direct proportion-
ality of

〈
r3
〉

r
and Nz, independent of ND. Thus a

trend toward either evaporation or enhanced growth
with increasing ND is largely prohibited where this
assumption is valid. Politovich and Cooper (1988)
show that the QS assumption is widely applica-

ble for the case DFP = 0, while Voloshchuk and
Sedunov (1977) apply the QS approximation for
DFP 6= 0 but do not evaluate its efficacy at large
ND. In this section we explore the coupled evolu-
tion of {GFP, SFP,G} for constant {w,DFP} without
recourse to the QS approximation.

6a. B equation

Returning to Eq. (23), integrating and substituting for
B gives the single ODE

dB
dt

=
c1z(t)

c0a2
− c2a

c0

{〈
r3
〉

r

a3
− r3

0

a3

}
+

dB
dt

∣∣∣∣
t=0

(29)

where c0 = (2α)−1 and
〈
r3
〉

r
(B,DFP) is again given

in Appendix C. In what follows we assume constant
{DFP, w}, r0 = 0, and dB/dt|t=0 = 0 correspond-
ing to SFP,G(0) = 0; the results of this section are
therefore conditioned on these initial assumptions.

A comparison of the evolution of rvol ≡
〈
r3
〉1/3

r

(left axis) and SFP,G (right axis) calculated from
Eq. (29) is shown in Fig. 6 for ND ∈ {0, 5, 10, 15}.
For t < 100 s, a trend toward enhanced growth with
increasing ND is observed in the behavior of rvol.
This early growth in rvol is described accurately by
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Figure 5: Contour plots of ND as a function of {T, L} for Nc = 50 cm−3 [Fig. 5(a)] and Nc = 500 cm−3

[5(b)], typical of clean marine and polluted marine/continental environments, respectively (Heymsfield and
McFarquhar 2001). ND is computed from Eq. (27), assuming σ = 0.01, w = 1 m/s, the Kolmogorov estimate
τ = 0.1ε−1/3L2/3 and ε = 0.01 m2 s−3. The figures reveal that a range of ND values between 10−2 and 102

exists for typical atmospheric conditions and model grid sizes.

Eq. (20) in the limit S → 0 and with the estimate
〈J〉r = (6a)−1, obtained as a rough average value
from Fig. 3:

rvol ≈
(DFPt

8a

)1/3

valid for 1 ≤ rvol ≤ 4 µm where 〈J〉r is approx-
imately constant. This early period of enhanced
growth driven by S′-fluctuations and associated with
small S values has recently been documented by
Celani et al. (2005) who performed an (x,z)-2D di-
rect numerical simulation of turbulent velocity and
supersaturation fields with 20,000 droplets assum-
ing w = 0, c2 ≈ 0 and a = 0. A rapid growth in the
in-cloud mean radius, r = 〈r〉r /

〈
r0
〉

r
, is shown in

their Fig. (6) which is phenomenologically equivalent
to the early increase in rvol at large ND of our Fig. 6†.

Figure 6 also shows a transition from large positive
(≈ 1%) to large negative (≈ −0.4%) SFP,G values as
ND increases with the largest extreme occuring at
t = 20–30 s. This monotonic decrease in SFP,G with
increasing ND is consistent with the behavior of BQS

†The growth in 〈r〉
r

predicted by the simulations of Celani et al.
is much more gradual than r, reaching 2.4r0 at t = τL (Seminara
2006).

shown in Fig. 4.
The relative impact of the QS approximation on

the coupled evolution of {fFP,B} is further revealed
in a graphical comparison of B(Nz, ND) computed
with [Fig. 4(a)] and without [Fig. 7(a)] this assump-
tion. Note that the results of Fig. 7 depend on the re-
laxation time-scale τr = a2c0 (0.025 s) and the num-
ber Nw (0.035), in addition to the numbers {Nz, ND}.
Figure 7(a) exhibits the same qualitative features
as 4(a), but there are quantitative differences. No-
tably, the triple point of the negative SFP,G region
has moved to somewhat larger ND and Nz values:
{ND ≈ 8.25, Nz ≈ 2.0,B ≈ 1.002}. In addition the re-
moval of the QS assumption increases the fraction
of totally evaporated droplets (dashed lines), and
consequently, a greater sensitivity of droplet spec-
tral evolution to the r = 0 boundary condition is ex-
pected.

Corresponding values of rvol/a are reproduced in
Fig. 7(b) where the shaded SFP,G < 0 region and
dashed lines are again shown. Enhanced growth at
early times is clearly apparent with drvol/dND > 0
at fixed Nz, in contrast to the QS assumption which
obeys drvol/dND = 0. This behavior implies that
the accuracy of the QS assumption decreases with
increasing ND in the asymptotic regime Nz → 0
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Figure 6: Evolution of rvol (left axis; normal lines)
and SFP,G (right axis; bold lines) computed from
Eq. (29) with r0 = 0, τr = 0.025 s and Nw = 0.035
for four different ND values: 0 (—), 5 (- -), 10 (· · ·)
and 15 (· – ·). Enhanced growth at early times and
decreasing SFP,G with increasing ND is observed.
Simulation parameters correspond to T = 285 K,
Nc = 100 cm−3 and w = 1 m/s.

(and away from the region of negative SFP), a trend
not documented in Voloshchuk and Sedunov (1977).
For example, at ND = 0 the QS approximation gives
a 3% error in predicted B at Nz ≈ 80 (125 s) while
the same error in B at ND = 12 occurs at Nz ≈ 250
(380 s).

The QS approximation converges to the prediction
of Eq. (29) in the limit t → ∞ but it also converges
at dB/dNz = 0 which bounds the shaded region in
Fig. 7. Thus the prediction of negative SFP has an
additional significance:

For the present initial conditions, prediction
of negative SFP implies that the QS as-
sumption underestimates cloud liquid wa-
ter while a positive SFP implies an overes-
timation.

This conclusion follows from inspection of Eq. (29).

6b. Spectral broadening

Although Voloshchuk and Sedunov (1977) provide
the first self-consistent derivation of coupled equa-

tions for {fFP, SFP} in terms of a single diffusiv-
ity, DFP, they do not analyze the resulting spec-
tra. Subsequent studies, e.g. Manton (1979),
Khvorostyanov and Curry (1999a,b), that contain a
more detailed spectral analysis neglect the impact
of S′-fluctuations on SFP, and therefore, do not con-
serve liquid water mass. These studies systemat-
ically overestimate SFP and, thereby overestimate〈
r3
〉

r
and all higher order moments.

Consistent with earlier work (Manton 1979), our
closed, adiabatic treatment of {fFP, SFP} in the ab-
sence of droplet coalescence produces a relatively
small broadening to larger sizes. This is illustrated
in Table 2 which lists the relative impact of ND on〈
r6
〉

r
; the moment

〈
r6
〉

r
is of microphysical rele-

vance because it provides a rough estimate of pre-
cipitation efficiency (Berry 1968; Khairoutdinov and
Kogan 2000). Consistent with the discussion of
Sec. 5f, Table 2 also shows that

〈
r2
〉

r
decreases with

increasing ND at fixed rvol. For the present com-
parison, ND = 0 is a single-valued spectrum (zero
dispersion) and therefore the calculated variation in〈
r6
〉

r
and

〈
r2
〉

r
is an upper bound.

H
H

H
H

H
ND

rvol

10

〈
r2
〉

r
20 50 10

〈
r6
〉

r
20 50

1 0.93 0.96 0.98 1.6 1.3 1.2
3 0.84 0.89 0.94 2.4 1.9 1.5
10 0.71 0.77 0.85 4.5 3.2 2.2
30 0.61 0.65 0.74 8.7 5.8 3.7

Table 2: Table of
〈
r2
〉

r
(ND)/

〈
r2
〉

r
(0) (middle col-

umn) and
〈
r6
〉

r
(ND)/

〈
r6
〉

r
(0) (right column) cal-

culated from Eq. (29) at rvol ∈ {10, 20, 50} µm and
ND ∈ {1, 3, 10, 30} with r0 = 0, τr = 0.025 s and
Nw = 0.035. Impact of S′-fluctuations persist to
rvol = 50 µm; the asymptotic decay SFP,G ∼ t−1/3

of a closed, adiabatic parcel enhances spectral dis-
persion as compared to earlier estimates (Manton
1979).

In the analysis of Manton (1979, pp. 902), the
spectral width of the transition probability GFP,
Eq. (17), is shown to follow

lim
t→∞

∆r ∼
{∫ t

0 dξ DFP(ξ)

α
∫ t

0 dξ S(ξ)

}1/2

for S > 0. Manton further assumes constant
{DFP, S} which gives constant ∆r and dispersion
∆r/ 〈r〉r ∼ t−1/2. These estimates are inconsistent
with the results of Table 2 which indicate broadening
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Figure 7: Contour plots of B [7(a)] and rvol/a [7(b)] as a function of {Nz, ND} calculated from Eq. (29) with
r0 = 0, τr = 0.025 s and Nw = 0.035, and indicated by the solid lines. The region where dB/dNz < 0 and,
consequently, SFP,G < 0 is shaded and bounded with a dashed line. Also shown is the cloudy fraction〈
r0
〉

r
∈ {0.7, 0.8, 0.9} indicated by the dotted contours. A trend toward enhanced growth is revealed in

Fig. 7(b) where drvol/dND > 0, in contrast to the QS assumption which obeys drvol/dND = 0. Simulation
parameters correspond to T = 285 K, Nc = 100 cm−3 and w = 1 m/s.

that persists to rvol = 50 µm. The difference be-
tween Manton (1979)’s assumed constant S and the
asymptotic SFP ∼ t−1/3 of our closed, adiabatic sys-
tem is the origin of this discrepancy. For the simula-
tions that produced the results of Table 2, ∆r broad-
ens slowly with time as t1/6 while the dispersion de-
creases slowly as t−1/6.

Table 2 shows that normalized
〈
r2
〉

r
decreases

with decreasing rvol, but this trend does not con-
tinue as rvol → 0. The minimum value of normal-
ized

〈
r2
〉

r
(ND) computed from Eq. (29) is shown in

Fig. 8 for four values of Nw corresponding to four dif-
ferent droplet concentrations. A few representative
values of rvol(ND) are also shown along each of the
four lines. Figure 8 reiterates that the impact of S ′-
fluctuations on droplet spectral evolution becomes
significant for ND values greater than unity and in-
creases monotonically with increasing ND. Minimum
values of normalized

〈
r2
〉

r
occur for rvol in the range

4–14 µm which is of particular significance for cloud
shortwave radiative properties. In fact, a survey of
effective droplet radius for liquid water clouds using
ISCCP satellite observations finds a globally and an-
nually average value of 11.4 ± 5.6 µm (Han et al.
1994), which is precisely the size regime where S ′-

fluctuations have a maximal impact on
〈
r2
〉

r
.

7. Comparison with RICO and
SCMS

Underpinning the theory of stochastic condensation
is the assumption that the cloud droplet spectrum ex-
periences a complete ensemble of S′-fluctuations.
This assumption does not hold for a single cloud
parcel with given cloud-base properties that rises
stochastically to a given height (Bartlett and Jonas
1972). Recent numerical simulations show that fluc-
tuations in microphysical properties occur below the
scale of the parcel, but are small and cause little
spectral broadening (Vaillancourt et al. 2001, 2002).
Observational studies of droplet spectra and corre-
lations, performed on a cloud-by-cloud basis, reveal
evidence of stochastic broadening but are far from
definitive. For example, the correlation

〈
〈r〉′r w′

〉
from

a single horizontal transect through a cumulus cloud
shows considerable scatter (Austin et al. 1985), but
the mean value is uncertain and this statistic, it-
self, is disputable because it does not include S ′-
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Figure 8: Comparison of the minimum value of〈
r2
〉

r
(ND)/

〈
r2
〉

r
(0) computed from Eq. (29) with

r0 = 0, τr = 0.025 s and for four different Nw values:
0.07 (—), 0.035 (- -), 0.014 (· · ·) and 0.007 (· – ·),
corresponding to Nc ∈ {50, 100, 250, 500} cm−3, re-
spectively, with T = 285 K, and w = 1 m/s. Also
shown are representative values of rvol in µm super-
imposed on each line.

fluctuations associated with temperature/moisture
variability and horizontal mixing (Politovich 1993).

Consistent with the present focus on subgrid cloud
parameterization, we use a new approach to ana-
lyze observed droplet spectra from the Rain In Cu-
mulus over the Ocean (RICO) and Small Cumulus
Microphysics Study (SCMS) campaigns that is a sig-
nificant departure from the traditional “parcel” analy-
sis. In particular, we consider droplet spectra aver-
aged over segments of length, L, which may contain
several clouds of varying size and liquid water den-
sity. This spectral averaging is constrained by the
segment-averaged liquid-water density, 〈ρl〉, which
must lie in a given narrow range. Our underlying as-
sumption is that the spectra averaged in this fashion
approximate the true grid-averaged droplet spectra
that a cloud parameterization “should” provide, for a
given grid size L and grid-averaged 〈ρl〉.

A seminal feature of the present analysis is the
prediction that DFP, and hence ND, increases with
scale, L, as demonstrated in Fig. 5. We find ev-

idence of spectral broadening in the RICO/SCMS
spectra that increases with L, and we use the
spectra themselves, and not a correlation such as〈
〈r〉′r w′

〉
, to infer the L-dependence and size of ND.

7a. Observational datasets

i. RICO/SCMS Both the RICO and SCMS cam-
paigns targeted fields of cumulus clouds with RICO
focusing on shallow, maritime, trade wind cumu-
lus while SCMS targeted shallow cumulus clouds in
Florida. Both projects included the statistical sam-
pling of cumulus cloud fields using a series of con-
stant altitude flight legs that attempt to gather a com-
plete ensemble of cloud properties. Thus these data
sets are well suited to the study of stochastic con-
densation. Our RICO analysis utilizes observations
from 11 flights of the NCAR C-130 that targeted the
statistical sampling of non-precipitating trade wind
cumulus: RF-{1,3,4,6,7,9,10,12,13,14,18} (JOSS
2005). For SCMS we use the same four NCAR C-
130 flights analyzed and validated by Rodts et al.
(2003) as a baseline: RF-{12,13,16,17}. The cloud
statistics and spectra that we report are obtained
from the NCAR FSSP-100 probe. This data set,
measured at 10 hz and post-processed according to
RAF (2006b,a), is smoothed once using a nearest-
neighbor filter with weights {1/4,1/2,1/4}; otherwise
no further post-processing is performed. The anal-
ysis of this section rests on the assumption that the
RICO/SCMS flight segments represent a complete,
unbiased ensemble of cumulus cloud statistics. See
Rodts et al. (2003) for a detailed discussion of this
assumption.

ii. Statistics The distribution of cloud sizes from
RICO and SCMS is compared in Fig. 9(a) for cloud
lengths between 100 and 7500 meters. Previous
studies have shown that cumulus cloud sizes obey a
power law distribution for sizes smaller than an outer
length. This is verified in Fig. 9(a) which shows an
increase in the decay of the size distribution begin-
ning near ≈ 1000 m, consistent with previous results
(Rodts et al. 2003).

We proceed to calculate cloud and droplet statis-
tics averaged over segments of length L1 ≤ L ≤
L2 and over liquid water densities in the range,
ρ1 ≤ 〈ρl〉 ≤ ρ2. Statistics are calculated for six
length bands: L1 ∈ 100, 200, 500, 1000, 2000, 5000
and L2 ∈ 150, 300, 750, 1500, 3000, 7500, respectively.
For the RICO dataset four density bands (in g/m3)
are selected: ρ1 ∈ {0.01, 0.02, 0.05, 0.1} and ρ2 ∈
{0.02, 0.05, 0.1, 0.5}, respectively, while two density
bands are chosen for SCMS: ρ1 ∈ {0.02, 0.05} and
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Figure 9: Cloud and droplet-spectrum statistics computed from the RICO and SCMS datasets described in
the text using a cloud threshold of 7 cm−3 (Rodts et al. 2003). Fig 9(a) shows the distribution of cloud sizes
between 100 and 7500 meters; a scale-break near 1000 m is evident (Rodts et al. 2003). For Figs. 9(b)
through (d) the abscissa represents the length of an observational segment that may contain several clouds.
Segment statistics are binned according to segment-averaged liquid-water density 〈ρl〉 (in g/m3) for RICO
(bold lines): 0.01–0.02 (—), 0.02–0.05 (- -), 0.05–0.01 (· · ·), 0.1–0.5 (· – ·), and for SCMS (lines+symbols):
0.02–0.05 (©), 0.05–0.2 (4). Cloud fraction, which decreases with increasing L, is shown in Fig. 9(b),
while Fig. 9(c) shows cloud number which increases with increasing L. A comparison of spectral width at
Right-Quarter-Maximum (RQM), computed from the segment-averaged droplet spectrum recorded by the
FSSP-100, is given in Fig. 9(d). Spectral dispersion increases with increasing L, consistent with theoretical
considerations of stochastic condensation from Sec. 5g.
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ρ2 ∈ {0.05, 0.2}, respectively. A total of about 3.5
million distinct segments are included in the RICO
analysis while around half-a-million segments make
up the SCMS dataset. Segment in-cloud number
concentration, Nc, increases with increasing 〈ρl〉;
a straightforward average of the average value for
each of the six length bands (in cm−3) gives Nc ∈
{42 ± 11, 53 ± 10, 65 ± 8, 88 ± 6}, respectively, for
RICO and Nc ∈ {113 ± 31, 146 ± 22}, respectively,
for SCMS. Increasing 〈ρl〉 is also associated with
decreasing temperatures, 〈T 〉. The same averaging
procedure for temperature (i.e. an average of the six
average values) gives (in C◦) 〈T 〉 ∈ {18.7±0.1, 18.0±
0.2, 17.2± 0.6, 15.7±0.8}, respectively, for RICO and
〈T 〉 ∈ {19.3± 0.2, 18.5± 0.4} for SCMS.

A plot of segment cloud fraction as a function
of L is shown in Fig. 9(b). Segment cloud frac-
tion decreases monotonically with increasing L as
expected. It also increases monotonically with in-
creasing 〈ρl〉 which reflects the fact that increasing
cloud area, and not just increasing in-cloud liquid
water density (see Nc above), is contributing to in-
crease segment 〈ρl〉. As segment cloud fraction de-
creases with increasing L, we expect the number of
clouds per segment to increase, and this is verified
in Fig. 9(c). Unlike segment cloud fraction, no clear
trend in cloud number with increasing 〈ρl〉 is evident.
Figures 9(b) and (c) demonstrate good correspon-
dence in the cumulus cloud statistics generated from
the RICO and SCMS datasets. Overall, the SCMS
segments contain somewhat fewer clouds and a sig-
nificantly smaller cloud fraction than the RICO seg-
ments at a given 〈ρl〉.

The present model of stochastic condensation
predicts increasing droplet spectral dispersion with
increasing L. However, great care must be taken
in the selection of an approximate statistic to mea-
sure this broadening in observational data. For
our purposes, an appropriate measure of stochastic
broadening must be insensitive to both the largest
drops (which are affected by collision-coalescence)
and the smallest (which are poorly measured by the
FSSP-100). The width of the droplet radius spec-
trum from mode to Right-Quarter-Maximum (RQM)†

satisfies both of these criteria and is shown in
Fig. 9(d) as a function of segment length L. For
density bands 2 through 4 of the RICO spectra, the
location of the spectral maximum and RQM fall be-
tween 3.9 µm (bin 6) and 15 µm which excludes both
the lower size range where the FSSP-100 is inaccu-
rate (bins 3-4) and the larger sizes where collision-
coalescence dominates. Extraction of the spectral

†The radius larger than (i.e. to the right of) the mode where f
drops to 1/4 of its maximum.

maximum for RICO density band 1 depends on bin 5
(3.1 µm) which may be less accurate. For SCMS, the
width-at-RQM is less accurately measured because
the spectral resolution is coarser (15 vs 28 total bins
for RICO) and the spectral maximum are at smaller
sizes as a result of larger droplet number concentra-
tions.

Overall, Fig. 9(d) demonstrates increasing spec-
tral dispersion (as measured by the width-at-RQM)
with increasing L as expected from the theory of
stochastic condensation. Increasing width-at-RQM
with increasing 〈ρl〉 is also exhibited. While these
trends may appear obvious upon first considera-
tion, the straightforward averaging of spectra is, in
contrast, L-independent by definition—summation is
invariant under re-ordering and re-grouping. It is
only the constraint of fixed 〈ρl〉 that allows the L-
dependence to emerge. It is encouraging that the
overall trend in width-at-RQM vs L is consistent
across the RICO and SCMS datasets and density
bands; this is suggestive of a common underlying
physics that may be captured in a single subgrid
modeling framework.

7b. Spectral broadening and ND

Atmospheric models are typically required to predict
the evolution of the grid-cell averaged droplet spec-
trum, f(r), or at least several of its moments, given a
set of prognosed quantities at the grid-scale includ-
ing 〈ρl〉. As shown in Figs. 9(b) and (c), a model
grid-cell of (horizontal) size ≥ 100 meters contain-
ing cumulus will have a cloud fraction less than unity
and may contain several clouds. Thus the grid-cell
averaged spectrum will, in general, be distinct from
the spectrum observed in, or averaged over, a single
given cloud.

The six RICO spectra for density band 3, 0.05 ≤
〈ρl〉 ≤ 0.1 in g/m3, are shown in Fig. 10(a) with unit
normalization. The average single-measurement
(L = FSSP resolution) spectrum for the same 〈ρl〉
range is also reproduced (dotted line). Note that the
local spectral maximum at 1.5 µm is in the small size
regime where the FSSP-100 data quality is poor and
is, subsequently, ignored. These spectra indicate
that, for cumulus clouds, the shape of f(r) is strongly
L-dependent. This behavior is in contradistinction to
the common modeling assumption that f(r) obeys a
log-normal or gamma distribution that is independent
of L. In addition to the increase in width-at-RQM with
increasing L documented in Fig. 9(d), Fig. 10(a) in-
dicates a decrease in skewness with increasing L.

The observational spectra shown in Fig. 10(a)
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Figure 10: Comparison of observed droplet spectra [Fig. 10(a)] and cloud fraction [10(b)] vs model predic-
tions. The observed spectra in 10(a) are computed for density band 3, 0.05 ≤ 〈ρl〉 ≤ 0.1 g/m3: six spectra
(—), corresponding to six L values (see text), and the single-point spectrum (· · ·) are shown, with the spec-
tral peak decreasing monotonically with increasing L. Parameter values for the corresponding modeled
spectra (- -), computed from Eq. (28), are retrieved by matching width-at-RQM and r to the observed val-
ues. Fig. 10(b) shows cloud fraction vs L for all observed (bold lines) and modeled (lines+symbols) density
bands (in g/m3) for RICO: 0.01–0.02 (—), 0.02–0.05 (- -), 0.05–0.01 (· · ·), 0.1–0.5 (· – ·), and for SCMS:
0.02–0.05 (– –), 0.05–0.2 (· — ·). The observed spectra and cloud fraction statistics show evidence of non-
Gaussian S′ statistics and inhomogeneous mixing, in contradistinction to the assumptions of the present
Fokker-Planck approach.

can be used to retrieve {Nz, ND} using the present
model of stochastic condensation in the QS limit,
Eq. (28). We perform this retrieval by matching two
statistics of the model to the data: (i) width-at-RQM
and (ii) in-cloud mean radius, r = 〈r〉r /

〈
r0
〉

r
. The

six retrieved spectra, corresponding to the six obser-
vational spectra for density band 3, are also shown
in Fig. 10. Qualitatively, the two sets of spectra are
similar with pronounced broadening in the “core” re-
gion between 3 and 15 µm that increases with in-
creasing L. However, important differences are also
evident. In particular, the observational spectra ex-
hibit a sharp spectral peak between 3.5 and 6 µm
that is not produced by the present model. In re-
lated fashion, the modeled spectra predict a signifi-
cant fraction of droplets in the 0–3 µm regime that is
not supported by the observations.

We attribute the cause of these differences to a
key underlying assumption of the present theory of
stochastic condensation which can be phrased in
two equivalent ways: (i) S′, itself, is assumed nor-

mally distributed, as per Sec. 2, or (ii) the assumed
Fokker-Planck renormalization τ → 0 gives a nor-
mal distribution of

∫ t

0
dξ S′(ξ), independent of the

S′-distribution. The equivalent result of either as-
sumption is that a sizable portion of droplets experi-
ence a vanishingly small, but non-zero, negative su-
persaturation that permits them to exist in the 0–3
µm regime for extended periods before evaporating
completely. This phenomenological picture is dis-
tinct from Baker et al. (1980)’s model of extreme in-
homogeneous mixing in which a fraction of droplets
evaporate completely during a mixing event while
the remainder are unchanged. Thus Baker et al.’s
model corresponds to a distribution of S ′ values that
is strongly peaked near zero and near the negative
supersaturation of unmixed environmental air. Sup-
port for this highly non-Gaussian distribution of S ′

values is found in a new PDF model of cloud mixing
and evaporation (Jeffery and Reisner 2006).

Further support for non-Gaussian S′ statistics and
inhomogeneous mixing is found in Fig. 10(b) which
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shows a comparison of the observed cloud frac-
tions, CF, (reproduced from Fig. 9(b)) and modeled
cloud fractions,

〈
r0
〉

r
. Strictly speaking,

〈
r0
〉

r
is not

equivalent to observational CF; f(r) does not pro-
vide spatial information and some volume fraction
of the “labels” (e.g. CCN) of completely evaporated
droplets may reside within cloudy air. Yet, overall,
at large L the observational spectra exhibit, simulta-
neously, small cloud fractions (five out of six density
bands with 0.1 < CF < 0.3) and well-defined spec-
tral peaks, while the modeled spectra have larger
cloud fractions (0.35 <

〈
r0
〉

r
≤ 0.5) and significant

broadening to smaller sizes. Thus Fig. 10(b) reiter-
ates the importance of accounting for the inhomoge-
neous mixing processes—allowing for the complete
evaporation of droplets without significant broaden-
ing to smaller sizes—in the formulation of stochastic
models of grid-averaged spectra.

Lastly, the values of ND retrieved from the obser-
vational RICO/SCMS spectra are shown in Fig. 11.
Also shown in the figure is a shaded region calcu-
lated using the theoretical estimate from Sec. 5g
which assumes τ ∼ L2/3 and a constant, L-
independent S′-variance. Observed values of 〈T 〉
and Nc are used to estimate ND; the shaded re-
gion is defined by an upper bound calculated from
the SCMS data (larger 〈T 〉 and Nc) and a lower
bound from RICO (smaller 〈T 〉 and Nc). The pat-
tern of retrieved ND values shares similarities with
the retrieved widths at RQM (Fig. 9(d)), although
ND does not exhibit a similar dependence on 〈ρl〉.
For large scales, L ≥ 500 m, the retrieved ND

values are broadly consistent with the estimates of
Fig. 5 despite the very crude (order of magnitude)
estimate of DFP. For smaller scales, L < 500 m,
the retrieved values of ND appear to be overesti-
mated. We attribute this overestimation to the lack of
aerosol physics (sub-cloud distributions, activation,
recycling) and collision-coalescence in the present
approach which leads to a dispersion-less spectrum
as L → 0.

8. Summary

In this work we have taken “another look” at stochas-
tic condensation in the hope of clarifying the ear-
lier derivations and fully exploring the implications
of this approach for subgrid cloud parameteriza-
tion. In contrast to the derivations of Levin and Se-
dunov (1966a,b, 1967) and Manton (1979), we begin
with a simple model of stochastic condensation—
independent, Gaussian supersaturation fluctuations
(S′) renewed after a time τ—that is exactly solvable.
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Figure 11: Retrieved values of ND for all six seg-
ment lengths and all RICO (4) and SCMS (2) den-
sity bands. Line types for the six density bands as
per Fig. 9(b)–(d); see Fig. 9 caption for further de-
tails. Also shown are the theoretical estimates of ND

(shaded region) from Sec. 5g using observed val-
ues of {〈T 〉 , Nc} from SCMS (region upper bound)
and RICO (region lower bound). The theoretical es-
timates assume ND ∼ L2/3 which agrees well with
retrieved ND values at large L.

This model is appropriate for subgrid cloud model-
ing where t � τ is not generally satisfied and can be
used to compare and contrast Lagrangian and Eu-
lerian approaches for modeling droplet spectra (An-
drejczuk et al. 2006). The Fokker-Planck approx-
imation to this exact solution follows by replacing
the discrete sampling of S′ with its continuous sur-
rogate. The Fokker-Planck diffusivity, DFP, is thus
seen to be the natural smooth-in-time approximation
to a discrete-in-time process. The contributions of
DFP to the evolution equation for the r-moments are
given in Eq. (20); these new subgrid terms are eas-
ily incorporated into moment-based cloud schemes
that resolve supersaturation.

We have also taken another look at the equa-
tion for the mean supersaturation, SFP, in the pres-
ence of S′ fluctuations modeled using Fokker-Planck
theory. While this problem is treated in an ap-
proximate fashion (and with little transparency) in
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Voloshchuk and Sedunov (1977), we derive the
expression for 〈S′|r〉FP without approximation and
show how this expression “closes” the SFP-equation
self-consistently, thereby ensuring that total wa-
ter mass is exactly conserved. Using the quasi-
stationary (QS) evaluation of SFP, we derive the ex-
act correction term to SFP,QS (i.e. the S′ contribu-
tion corresponding to the Fokker-Planck model). The
correction term is negative definite, peaks in magni-
tude when 〈r〉r is near the accommodation length
(≈ 2 µm), and decays as 〈r−1〉r as the droplet spec-
trum grows to large sizes. This exact result has
a direct correspondence to the analysis of Cooper
(1989). Using our self-consistent equation for SFP,
we evaluate spectral broadening in an adiabatic vol-
ume (grid-cell or grid-column) and find some broad-
ening to larger sizes (consistent with earlier esti-
mates, e.g. Manton (1979)), but a more significant
decrease in

〈
r2
〉

r
at fixed liquid water content which

may have implications for modeled cloud reflectivity.
While the proceeding discussion is largely a clar-

ification and elucidation of previous work, most no-
tably Voloshchuk and Sedunov (1977), we have also
extended the theory of stochastic condensation by
deriving the non-dimensional number, ND, that de-
termines the relative impact of S′-fluctuations on
droplet spectral evolution in an adiabatic volume and
in the QS limit. For constant updraft velocity and
DFP, ND is also a constant, ranging from 10−2 to
102 for typical atmospheric conditions and model grid
sizes when the assumed S′-standard deviation is
1%. We find significant spectral broadening, and
in particular decreasing

〈
r2
〉

r
, for ND > 1, and

discover that SFP,QS can be negative in a partially
cloudy grid-cell when ND > 6.5 for droplets of zero
initial size. The information provided by ND is of
direct relevance to the implementation of stochas-
tic condensation in a subgrid cloud scheme where
both (i) a priori estimates of DFP and (ii) a posteri-
ori diagnostics of the relative importance of DFP, are
needed.

Using in-situ droplet spectra from cumulus cloud
fields observed during the RICO and SCMS field
campaigns, we have verified a seminal prediction
of the theory of stochastic condensation—increasing
broadening with increasing spatial scale—by aver-
aging the observed spectra over segments contain-
ing one or more clouds. In addition, scale-dependent
values of ND retrieved from the segment-averaged
spectra using our adiabatic model show good con-
sistency with the previously discussed theoretical es-
timates. While past studies of stochastic condensa-
tion emphasize the spectral broadening observed in
spectra from individual clouds, we believe that our

scale-dependent analysis of observed spectra is the
correct approach for understanding and assessing
the efficacy of stochastic condensation as a sub-
grid cloud model. Moreover, our results suggest that
the parameterization of unresolved S′-fluctuations
using Fokker-Planck theory or other means will be-
come increasingly important as explicit (bin) micro-
physics schemes are applied at larger scales (Lynn
et al. 2005), where an increasing fraction of individ-
ual clouds are, themselves, unresolved.

However, important differences between the ob-
served and modeled droplet spectra are also ob-
served. In particular, the observed spectra sug-
gest non-Gaussian S′ fluctuations and the inhomo-
geneous mixing process of Baker et al. (1980). Fur-
ther work is needed to assess the impact of non-
Gaussian S′-fluctuations and large renewal times on
droplet spectral broadening and to derive differential
operators that can model their ensemble effect in the
equations of cloud physics. This line of investigation
is currently being pursued.
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A. Thermodynamic constants

The constant α defined in Eq. (4) is (Pruppacher and
Klett 1997, Eq. (13-28))

α = (ρs/ρw)DvG

where

G =

{
1 +

ρs

ρd

Lv

cpT

(
Lv

RvT
− 1

)}−1

,

ρs is saturation vapor density, ρd is air density, ρw

is water density, Dv is molecular diffusivity of vapor,
Lv is latent heat of vaporization, cp is heat capacity,
Rv is water vapor gas constant, T is temperature,
and we have assumed equality of the conductivities
of vapor and temperature.

The constant c1 of Eq. (21) is (Pruppacher and
Klett 1997, Eq. (13-29))

c1 =
Lv

RvT 2

g

cp
− g

RdT
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where g is gravitational acceleration and Rd is the
gas constant of air. To good approximation the con-
stant c2 is

c2 = (4/3)πDvNc/α

where Nc is droplet concentration.

B. Derivation of Nw, ND and ND,S

The non-dimensional number Nw along with Nz de-
termines SQS in the case σ2 = 0. Let

Nw(t) ≡ c1

c2aα
w(t).

Then solving Eq. (22) for SQS gives

SQS =
Nw

3

(
r3
0

a3
+ Nz

)−2/3
{

1 +

(
r3
0

a3
+ Nz

)1/3
}

which illustrates how the two numbers {Nz, Nw}
combine to modulate S. For the special case of con-
stant w we have the asymptotic

lim
Nz→∞

SQS ∼ N−1/3
z ∼ t−1/3

which shows that SQS decays as the parcel rises.
For the regime r3

0/a3 � Nz � 1 we have

SQS ∼ N−2/3
z ∼ t−2/3

which exhibits a faster decay.
The non-dimensional number ND determines the

relative impact of S′-fluctuations on the r-moments.
It cannot be derived on the basis of dimensional
analysis alone since the parameter a−4

∫ t

0 dξ DFP(ξ)
is a non-dimensional group. Instead, we consider
the case fFP = GFP and expand the analytic ex-
pression for

〈
r3
〉

r
(see appendix C) to first order in

small parameter
∫ t

0
dξ DFP(ξ)/β2 where β = (r0 +

a)2 + 2α
∫ t

0
dξ SFP,G(ξ):

〈
r3
〉

r
= β3/2

{
1 +

3
∫ t

0
dξ DFP(ξ)

4β2

}
− 3aβ

+3a2β1/2

{
1 −

∫ t

0
dξ DFP(ξ)

4β2

}
− a3

Substituting this result into Eq. (28) and rearranging
gives

(
B1/2

QS − 1
)3

=
r3
0

a3
+ Nz

{
1 − 3

4

ND

B1/2
QS

+
3

4

ND

B3/2
QS

}

(30)

where ND is defined by Eq. (27).
If either w or DFP is time-dependent then the num-

ber

ND,S ≡ c2a

c1α

DFP(t)

z(t)
,

along with Nw, determines the relationship between
S and {BQS, Nz, ND}.

C. GFP moments

Equations (28) and (29) require the evaluation of〈
r3
〉

r
. For GFP defined by Eq. (17) an analytic ex-

pression for
〈
r3
〉

r
is available if the lower bound,

r = 0, on the integration over GFP is replace by
r = −a. We have verified that this approximation
is valid for

〈
r3
〉

r
where the dominant contribution

comes from r � 0.
Defining γ =

∫ t

0 dξ DFP(ξ) and λ = β2/(4γ) with

β = (r0 +a)2 +2α
∫ t

0 dξ SFP(ξ), the moments of GFP

with support [−a,∞] are
〈
(r + a)0

〉
r

= erfc
(
−
√

λ
)

/2

〈
(r + a)1

〉
r

=
e−λ

√
2πγ1/4

{√γΓ(3/4)F1,1(3/4, 1/2, λ)

+ βΓ(5/4)F1,1(5/4, 3/2, λ)}
〈
(r + a)2

〉
r

=
β

2
erfc

(
−
√

λ
)

+
(γ

π

)1/2

e−λ

〈
(r + a)3

〉
r

=
γ1/4e−λ

2
√

2π
{√γΓ(1/4)F1,1(5/4, 1/2, λ)

+ 3βΓ(3/4)F1,1(7/4, 3/2, λ)}
〈
(r + a)4

〉
r

=
1

2
(2γ + β2)erfc

(
−
√

λ
)

+
(γ

π

)1/2

βe−λ

〈
(r + a)5

〉
r

=
3γ3/4e−λ

16
√

2π
{16

√
γΓ(3/4)F1,1(7/4, 1/2, λ)

− 5βΓ(−3/4)F1,1(9/4, 3/2, λ)}
〈
(r + a)6

〉
r

=
β

2
(6γ + β2)erfc

(
−
√

λ
)

+
(γ

π

)1/2

(4γ + β2)e−λ

These expressions are used to calculate 〈rn〉r with
n ∈ {2, 3, 6}. In particular
〈
r3
〉

r
=
〈
(r + a)3

〉
r
−3a

〈
(r + a)2

〉
r
+3a2

〈
(r + a)1

〉
r
−a3

〈
(r + a)0

〉
r

(31)
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